EXERCISE - 01

CHECK YOUR GRASP

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

1. In a triangle $\angle A = 55^{\circ}$ and $\angle B = 15^{\circ}$, then $\frac{c^2 - a^2}{ab}$ is equal to -	
--	--

(A) 4

(B) 3

(C) 2

(D) 1

2. In a triangle ABC a : b : c = $\sqrt{3}$: 1 : 1, then the triangle is -

(A) right angled triangle

(B) obtuse angled triangle

(C) acute angled triangle, which is not isosceles

(D) Equilateral triangle

3. The sides of a triangle ABC are x, y, $\sqrt{x^2 + y^2 + xy}$ respectively. The size of the greatest angle in radians is -

(A) $\frac{2\pi}{3}$

(B) $\frac{\pi}{3}$

(C) $\frac{\pi}{2}$

(D) none of these

 $\textbf{4.} \qquad \text{In a } \Delta ABC \left(\frac{a^2}{\sin A} + \frac{b^2}{\sin B} + \frac{c^2}{\sin C} \right). \ \sin \frac{A}{2} \ \sin \frac{B}{2} \sin \frac{C}{2} \ \text{simplifies to -}$

(A) 2Δ

(B) Δ

(C) $\frac{\Delta}{2}$

(D) $\frac{\Delta}{4}$

(where Δ is the area of triangle)

5. If p_1 , p_2 , p_3 are the altitudes of a triangle from its vertices A, B, C and Δ , the area of the triangle ABC, then $\frac{1}{p_1} + \frac{1}{p_2} - \frac{1}{p_3}$ is equal to -

(A) $\frac{s}{\Lambda}$

(B) $\frac{s-c}{\Delta}$

(C) $\frac{s-b}{\Lambda}$

(D) $\frac{s-a}{\Delta}$

6. If in a triangle ABC angle B = 90 then $tan^2A/2$ is -

(A) $\frac{b-c}{a}$

(B) $\frac{b-c}{b+c}$

(C) $\frac{b+c}{b-c}$

(D) $\frac{b+c}{a}$

7. In a triangle ABC, if $\frac{a^3 + b^3 + c^3}{\sin^3 A + \sin^3 B + \sin^3 C} = 343$, the diameter of the circle circumscribing the triangle

is -

(A) 7 units

(B) 14 units

(C) 21 units

(D) none of these

8. In a $\triangle ABC$ if b + c = 3a then $\cot \frac{B}{2} \cdot \cot \frac{C}{2}$ has the value equal to -

(A) 4

(B) 3

(C) 2

(D) 1

9. If $\frac{a}{\sin A}$ = K, then the area of $\triangle ABC$ in terms of K and sines of the angles is -

(A) $\frac{K^2}{4} \sin A \sin B \sin C$

(B) $\frac{K^2}{2}$ sinAsinBsinC

(C) $2K^2\sin A\sin B\sin(A + B)$

(D) none

10. In a \triangle ABC, \angle C = 60° & \angle A = 75°. If D is a point on AC such that the area of the \triangle BAD is $\sqrt{3}$ times the area of the \triangle BCD, then the \angle ABD =

(A) 60

(B) 30

(C) 90

(D) none of these

- In a $\triangle ABC$, a semicircle is inscribed, whose diameter lies on the side c. Then the radius of the semicircle is (Where Δ is the area of the triangle ABC)
- (B) $\frac{2\Delta}{a+b-c}$ (C) $\frac{2\Delta}{s}$

(D) $\frac{c}{2}$

- In a triangle ABC, right angled at B, the inradius is -
 - (A) $\frac{AB+BC-AC}{2}$ (B) $\frac{AB+AC-BC}{2}$ (C) $\frac{AB+BC+AC}{2}$

- (D) none
- In triangle ABC where A, B, C are acute, the distances of the orthocentre from the sides are in the proportion
 - (A) $\cos A : \cos B : \cos C$

(B) $\sin A : \sin B : \sin C$

(C) sec A: sec B: sec C

- (D) tan A: tan B: tan C
- 14. In a $\triangle ABC$, the value of $\frac{a\cos A + b\cos B + c\cos C}{a+b+c}$ is equal to -
 - (A) $\frac{r}{R}$

- (D) $\frac{2r}{R}$
- If the orthocentre and circumcentre of a triangle ABC be at equal distances from the side BC and lie on the same side of BC then tanBtanC has the value equal to -
 - (A) 3

- (D) $-\frac{1}{2}$
- In an equilateral triangle, inradius r, circumradius r & ex-radius r are in -

(B) G.P.

- (D) none of these
- With usual notation in a $\triangle ABC$ $\left(\frac{1}{r_1} + \frac{1}{r_2}\right) \left(\frac{1}{r_2} + \frac{1}{r_3}\right) \left(\frac{1}{r_2} + \frac{1}{r_1}\right) = \frac{K R^3}{3^2 b^2 c^2}$ then K has value equal to -
 - (A) 1

(C) 64

(D) 128

- In a triangle ABC, $\frac{r_1 + r_2}{1 + \cos C}$ is equal to -
 - (A) $2ab/c\Delta$
- (B) $(a + b)/c\Delta$
- (D) abc/Λ^2

- With usual notations in a triangle ABC, if r_1 = $2r_2$ = $2r_3$ then -
 - (A) 4a = 3b
- (B) 3a = 2b

- **20.** If r_1 , r_2 , and r_3 be the radii of excircles of the triangle ABC, then $\frac{\sum r_1}{\sqrt{\sum r_1 r_2}}$ is equal to -
 - (A) $\sum \cot \frac{A}{2}$
- (B) $\sum \cot \frac{A}{2} \cot \frac{B}{2}$ (C) $\sum \tan \frac{A}{2}$
- (D) $\prod \tan \frac{A}{a}$

If in a triangle PQR, sin P, sin Q, sin R are in A.P., then -

[JEE 98]

(A) the altitudes are in A.P.

(B) the altitudes are in H.P.

(C) the medians are in G.P.

- (D) the medians are in A.P.
- In $\triangle ABC$, if $r:r_1:R=2:12:5$, where all symbols have their usual meaning, then -
 - (A) \triangle ABC is an acute angled triangle
- (B) $\triangle ABC$ is an obtuse angled triangle
- (C) \triangle ABC is right angled which is not isosceles
- (D) \triangle ABC is isosceles which is not right angled

THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)

23. In a
$$\triangle ABC$$
, $A = \frac{\pi}{3}$ and $b : c = 2 : 3$. If $\tan \alpha = \frac{\sqrt{3}}{5}$, $0 < \alpha < \frac{\pi}{2}$, then -

(A)
$$B = 60^{\circ} + 0$$

(B)
$$C = 60^{\circ} + \alpha$$

(C)
$$B = 60^{\circ} - \alpha$$

(D)
$$C = 60^{\circ} - \alpha$$

24. In a triangle ABC, points D and E are taken on sides BC such that DB = DE = EC. If \angle ADE = \angle AED = θ , then -

(A)
$$tan\theta = 3tanB$$

(B)
$$tan\theta = 3tanC$$

(C)
$$\tan A = \frac{6 \tan \theta}{\tan^2 \theta - 9}$$
 (D) $9 \cot^2 \frac{A}{2} = \tan^2 \theta$

(D)
$$9 \cot^2 \frac{A}{2} = \tan^2 \theta$$

25. If a, b, A are given in a triangle and c_1 and c_2 are two possible values of third side such that $c_1^2 + c_1c_2 + c_2^2 = a^2$, then A is equal to -

26. In a $\triangle ABC$, AD is the bisector of the angle A meeting BC at D. If I is the incentre of the triangle, then AI: DI is equal to -

(A)
$$(\sin B + \sin C) : \sin A$$

(B)
$$(\cos B + \cos C) : \cos A$$

(C)
$$\cos\left(\frac{B-C}{2}\right):\cos\left(\frac{B+C}{2}\right)$$

(D)
$$\sin\left(\frac{B-C}{2}\right)$$
: $\sin\left(\frac{B+C}{2}\right)$

CHECK	CHECK YOUR GRASP ANSWER KEY					EXERCISE-1				
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	В	Α	В	В	В	Α	С	В	В
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	Α	Α	С	Α	Α	Α	С	С	С	С
Que.	21	22	23	24	25	26				
Ans.	В	С	B,C	A,B,C,D	В	A,C				

EXERCISE - 02

BRAIN TEASERS

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)

- If A, B, C are angles of a triangle which of the following will not imply it is equilateral -1.
 - (A) $tanA + tanB + tanC = 3\sqrt{3}$

(B) $\cot A + \cot B + \cot C = \sqrt{3}$

(C) a + b + c = 2R

(D) $a^2 + b^2 + c^2 = 9R^2$

- In a $\triangle ABC$, $\frac{s}{R}$ is equal to -
 - (A) sinA + sinB + sinC
- (B) $4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$ (C) $4\sin A \sin B \sin C$
- If cosA + cosB + 2cosC = 2 then the sides of the $\triangle ABC$ are in-

- (B) G.P.
- (D) none
- The line $\frac{x}{6} + \frac{y}{8} = 1$ cuts the co-ordinate axis at A & B. If O is origin, then $\prod \sin \frac{A}{2}$ for the triangle OAB is -
 - (A) 5/6

- (B) 1/10
- (C) 5/4
- (D) none of above
- In a triangle ABC, CD is the bisector of the angle C. If $\cos \frac{C}{2}$ has the value $\frac{1}{3}$ and $\ell(CD) = 6$, then $\left(\frac{1}{a} + \frac{1}{b}\right)$ 5. has the value equal to -
 - (A) $\frac{1}{9}$

(C) $\frac{1}{6}$

- (D) none
- In the triangle ABC, CH and CM are the lengths of the altitude and median to the base AB. If a = 10, b = 26, c = 32 then length HM is -
 - (A) 5

(B) 7

(C) 9

- (D) none
- D, E, F are the foot of the perpendiculars from vertices A, B, C to sides BC, CA, AB respectively, and H is the 7. orthocentre of acute angled triangle ABC; where a, b, c are the sides of triangle ABC, then
 - (A) H is the incentre of triangle DEF
 - (B) A, B, C are excentres of triangle DEF
 - Perimeter of ΔDEF is acosA + bcosB + c cosC
 - (D) Circumradius of triangle DEF is $\frac{R}{2}$, where R is circumradius of $\triangle ABC$.
- If x, y and z are the distances of incentre from the vertices of the triangle ABC respectively then $\frac{abc}{xyz}$ 8. equal to -
 - (A) $\prod \tan \frac{A}{2}$
- (B) $\sum \cot \frac{A}{2}$
- (C) $\sum \tan \frac{A}{2}$
- (D) $\prod \cot \frac{A}{2}$
- 9. The medians of a AABC are 9 cm, 12 cm and 15 cm respectively. Then the area of the triangle is -
 - (A) 96 sq cm
- (B) 84 sq cm
- (C) 72 sq cm
- (D) 60 sq cm
- In an isosceles $\triangle ABC$, if the altitudes intersect on the inscribed circle then the cosine of the vertical angle 'A' is
 - (A) $\frac{1}{9}$

(B) $\frac{1}{3}$

(C) $\frac{2}{3}$

(D) none

- In triangle ABC, $\cos A + 2\cos B + \cos C = 2$, then -
 - (A) $\tan \frac{A}{2} \tan \frac{C}{2} = 3$
- (B) $\cot \frac{A}{2} \cot \frac{C}{2} = 3$ (C) $\cot \frac{A}{2} + \cot \frac{C}{2} = 2 \cot \frac{B}{2}$ (D) $\tan \frac{A}{2} \tan \frac{C}{2} = 0$
- If in a triangle ABC p, q, r are the altitudes from the vertices A, B, C to the opposite sides, then which of the following does not hold good?
 - (A) $(\Sigma p) \left(\sum \frac{1}{p} \right) = (\Sigma a) \left(\sum \frac{1}{a} \right)$

- (B) (Σp) $(\Sigma a) = \left(\Sigma \frac{1}{p}\right) \left(\Sigma \frac{1}{a}\right)$
- (C) (Σp) (Σpq) $(\Pi a) = (\Sigma a)$ (Σab) (Πp)
- (D) $\left(\Sigma \frac{1}{p}\right) \Pi \left(\frac{1}{p} + \frac{1}{q} \frac{1}{r}\right) \Pi a^2 = 16R^2$
- AD, BE and CF are the perpendiculars from the angular points of a ΔABC upon the opposite sides. The perimeters of the ΔDEF and ΔABC are in the ratio -

(C) $\frac{r}{R}$

Where r is the inradius and R is circum-radius of the $\triangle ABC$

- If 'O' is the circum centre of the $\triangle ABC$ and R_1 , R_2 and R_3 are the radii of the circumcircles of triangles OBC, OCA and OAB respectively then $\frac{a}{R_1} + \frac{b}{R_2} + \frac{c}{R_3}$ has the value equal to -
- (B) $\frac{R^3}{abc}$
- (C) $\frac{4\Delta}{R^2}$

- In a triangle ABC, $(r_1 r) (r_2 r) (r_3 r)$ is equal to -
 - (A) $4Rr^2$

(B) $\frac{4abc.\Delta}{(a+b+c)^2}$

(C) $16R^3(\cos A + \cos B + \cos C - 1)$

- (D) $r^3 \cos ec \frac{A}{2} \cos ec \frac{B}{2} \cos ec \frac{C}{2}$
- Two rays emanate from the point A and form an angle of 43 with one another. Lines L_1 , L_2 and L_3 (no two of which are parallel) each form an isosceles triangle with the original rays. The largest angle of the triangle formed by lines L_1 , L_2 and L_3 is -
 - (A) 127

(B) 129

- (C) 133
- (D) 137

BRAIN TEASERS				Α	NSWER	KEY	Е			RCISE-2
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	С	A,B	Α	В	Α	С	A,B,C,D	B,D	С	Α
Que.	11	12	13	14	15	16				
Ans.	B,C	В	С	C,D	A,B,D	В				

EXERCISE - 03

MISCELLANEOUS TYPE QUESTIONS

TRUE / FALSE

- 1. If external angle bisector of any angle of triangle ABC is parallel to the opposite base then triangle is isosceles.
- 2. Sides of the pedal triangle of any acute or obtuse angle triangle are given by Rsin2A, Rsin2B and Rsin2C.
- 3. In the triangle ABC, the altitudes p_1 , p_2 , p_3 are in AP, then a, b, c are in HP.
- **4.** In a triangle ABC, if $a^4 2(b^2 + c^2) a^2 + b^4 + b^2 c^2 + c^4 = 0$, then $\angle A$ is 60 or 120

FILL IN THE BLANKS

- 1. In a $\triangle ABC$, tan A: tan B: tan C = 1:2:3. Hence sinA: sinB: sinC = _____.
- 2. In triangle ABC, if a = 2, b = 3 and tan A = $\sqrt{\frac{3}{5}}$ then the two possible values of the side c are $K_1\sqrt{10}$ and $K_2\sqrt{10}$ then K_1 and K_2 are equal to ______ and _____.
- 3. If f, g and h are the lengths of the perpendiculars from the circumcentre on the sides a, b and c of a triangle ABC respectively then $\frac{a}{f} + \frac{b}{g} + \frac{c}{h} = K \frac{abc}{fgh}$ where K has the value equal to ______.

MATCH THE COLUMN

Following question contains statements given in two columns, which have to be matched. The statements in **Column-I** are labelled as A, B, C and D while the statements in **Column-II** are labelled as p, q, r and s. Any given statement in **Column-I** can have correct matching with **ONE** statement in **Column-II**.

1. If p_1 , p_2 , p_3 are altitudes of a triangle ABC from the vertices A, B, C respectively and Δ is the area of the triangle and s is semi perimeter of the triangle, then match the columns

	Column-I	Column-I			
(A)	If $\frac{1}{p_1} + \frac{1}{p_2} + \frac{1}{p_3} = \frac{1}{2}$ then the least value of	(p)	$\frac{1}{R}$		
	$p_1p_2p_3$ is				
(B)	The value of $\frac{\cos A}{p_1} + \frac{\cos B}{p_2} + \frac{\cos C}{p_3}$ is	(q)	216		
(C)	The minimum value of $\frac{b^2p_1}{c} + \frac{c^2p_2}{a} + \frac{a^2p_3}{b}$ is	(r)	6Δ		
(D)	The value of $p_1^{-2} + p_2^{-2} + p_3^{-2}$ is	(s)	$rac{\Sigma a^2}{4\Delta^2}$		

ASSERTION & REASON

These questions contains, Statement I (assertion) and Statement II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for statement-I.
- (C) Statement-I is true, Statement-II is false.
- (D) Statement-I is false, Statement-II is true.

1. Statement-I: If two sides of a triangle are 4 and 5, then its area lies in (0, 10]

Because:

Statement-II: Area of a triangle $=\frac{1}{2}$ ab sinC and sinC \in (0, 1)

(A) A

(B) B

(D) D

2. Statement-I: Perimeter of a regular pentagon inscribed in a circle with centre O and radius a cm equals 10 a sin 36 cm

Because:

Statement-II: Perimeter of a regular polygon inscribed in a circle with centre O and radius a cm equals

(3n - 5) $sin\bigg(\frac{360^\circ}{2n}\bigg)$ cm, then it is n sided, where n \geq 3

(A) A

(B) B

(C) C

(D) D

3. Statement-I: The statement that circumradius and inradius of a triangle are 12 and 8 respectively can not be correct.

Because:

Statement-II: Circumradius ≥ 2 (inradius)

(A) A

(B) B

(C) C

(D) D

Statement-I: In any triangle ABC, the minimum value of $\frac{r_1 + r_2 + r_3}{r}$ is 9 4.

Because:

Statement-II: For any three numbers AM ≥ GM

(A) A

(B) B

(C) C

(D) D

Statement-I: Area of triangle having sides greater than 9 can be smaller than area of triangle having sides 5. less than 3.

Because:

Statement-II: Sine of an angle of triangle can take any value in (0, 1)

(A) A

(B) B

(C) C

(D) D

COMPREHENSION BASED QUESTIONS

Comprehension # 1

Let A_n be the area that is outside a n-sided regular polygon and inside it's circumscribing circle. Also B_n is the area inside the polygon and outside the circle inscribed in the polygon. Let R be the radius of the circle circumscribing n-sided polygon.

On the basis of above information, answer the following questions :

If n = 6 then A_n is equal to-

(A)
$$R^2 \left(\frac{\pi - \sqrt{3}}{2} \right)$$

(A)
$$R^2 \left(\frac{\pi - \sqrt{3}}{2} \right)$$
 (B) $R^2 \left(\frac{2\pi - 6\sqrt{3}}{2} \right)$ (C) $R^2 \left(\pi - \sqrt{3} \right)$

(C)
$$R^2(\pi - \sqrt{3})$$

(D)
$$R^2 \left(\frac{2\pi - 3\sqrt{3}}{2} \right)$$

- If n = 4 then B_n is equal to -2.
- (A) $R^2 \frac{(4-\pi)}{2}$ (B) $R^2 \frac{(4-\pi\sqrt{2})}{2}$ (C) $R^2 \frac{(4\sqrt{2}-\pi)}{2}$
- (D) none of these

- $\mathbf{3.} \qquad \frac{A_n}{B_n} \text{ is equal to } \left(\theta = \frac{\pi}{n}\right) \text{-}$
- $(A) \quad \frac{2\theta \sin 2\theta}{\sin 2\theta \theta \cos^2 \theta} \qquad \qquad (B) \quad \frac{2\theta \sin \theta}{\sin 2\theta \theta \cos^2 \theta} \qquad \qquad (C) \quad \frac{\theta \cos \theta \sin \theta}{\cos \theta \left(\sin \theta \theta \cos \theta\right)}$
- (D) none of these

ANSWER KEY

EXERCISE-3

- True / False
- **2**. F
- **3**. T
- Fill in the Blanks
 - 1. $\sqrt{5} : 2\sqrt{2} : 3$ 2. 1 and 1/2

- Match the Column
 - 1. (A) \rightarrow (q), (B) \rightarrow (p), (C) \rightarrow (r), (D) \rightarrow (s)
- Assertion & Reason
- **2**. C
- **3**. A
- **4**. C **5**. A

2. A

- Comprehension Based Questions
 - Comprehension # 1 : 1. D
- **3**. C

EXERCISE - 04 [A]

CONCEPTUAL SUBJECTIVE EXERCISE

- 1. Prove that : $4 R \sin A \sin B \sin C = a \cos A + b \cos B + c \cos C$
- 2. Prove that : a cos B cosC + b cos C cos A + c cosA cos B = $\frac{\Delta}{R}$
- 3. If p_1 , p_2 , p_3 are the altitudes of a triangle from the vertices A, B, C & Δ denotes the area of the triangle, prove that $\frac{1}{p_1} + \frac{1}{p_2} \frac{1}{p_3} = \frac{2ab}{(a+b+c)\Delta}\cos^2\frac{C}{2}$.
- **4.** Prove that : $\frac{abc}{s}\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2} = \Delta$
- **5.** For any triangle ABC, if B = 3C , show that $\cos C = \sqrt{\frac{b+c}{4c}}$ & $\sin \frac{A}{2} = \frac{b-c}{2c}$.
- **6.** ABC is a triangle. D is the mid point of BC. If AD is perpendicular to AC, then prove that $\cos A \cdot \cos C = \frac{2(c^2 a^2)}{3ac}.$
- 7. Let $1 \le m \le 3$. In a triangle ABC , if $2 \ b = (m+1)$ a $\ \ \, \cos A = \frac{1}{2} \sqrt{\frac{(m-1)(m+3)}{m}}$ prove that there are two values to the third side, one of which is m times the other.
- 8. Prove that : $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{1}{r}$
- **9.** Prove that : $r_1 + r_2 + r_3 r = 4R$
- **10.** Prove that : $\frac{b-c}{r_1} + \frac{c-a}{r_2} + \frac{a-b}{r_3} = 0$
- 11. Consider a ΔDEF , the pedal triangle of the ΔABC such that A-F-B and B-D-C are collinear . If H is the incentre of ΔDEF and R_1 , R_2 , R_3 are the circumradii of the quadarilaterals AFHE; BDHF and CEHD respectively, then prove that $\sum R_1 = R + r$ where R is the circumradius and r is the inradius of ΔABC .
- **12.** DEF is the triangle formed by joining the points of contact of the incircle with the sides of the triangle ABC, prove that
 - (a) its sides are $2r \cos \frac{A}{2}$, $2r \cos \frac{B}{2}$ and $2r \cos \frac{C}{2}$ where r is the radius of incircle of $\triangle ABC$.
 - (b) its angles are $\frac{\pi}{2} \frac{A}{2}$, $\frac{\pi}{2} \frac{B}{2}$ and $\frac{\pi}{2} \frac{C}{2}$
 - (c) its area is $\frac{r^2s}{2R}$ where 's' is the semiperimeter and R is the circumradius of the ΔABC .

EXERCISE - 04 [B]

SUBJECTIVE EXERCISE **BRAIN STORMING**

- 1. If sides a, b, c, of the triangle ABC are in A.P., then prove that $\sin^2 \frac{A}{2} \csc 2A$; $\sin^2 \frac{B}{2} \csc 2B$; $\sin^2 \frac{C}{2} \csc 2C$ are in H.P.
- 2. Sides a, b, c of the triangle ABC are in H.P., then prove that cosecA (cosecA + cot A) ; cosec B (cosecB + cotB) & cosecC (cosecC + cot C) are in A.P.
- 3. In a Δ ABC, GA,GB,GC makes angles α , β , γ with each other where G is the centroid to the Δ ABC then show that, $\cot A + \cot B + \cot C + \cot \alpha + \cot \beta + \cot \gamma = 0$.
- In a triangle ABC, the median to the side BC is of length $\frac{1}{\sqrt{11-6\sqrt{3}}}$ & it divides the angle A into angles of 30 4. & 45 . Find the length of the side BC.
- Prove that : $\frac{r_1}{bc} + \frac{r_2}{ca} + \frac{r_3}{ab} = \frac{1}{r} \frac{1}{2R}$ 5.
- Prove that : $\frac{\tan \frac{A}{2}}{(a-b)(a-c)} + \frac{\tan \frac{B}{2}}{(b-a)(b-c)} + \frac{\tan \frac{C}{2}}{(c-a)(c-b)} = \frac{1}{\Delta}$ 6.
- Prove that in a triangle $\frac{bc}{r_1} + \frac{ca}{r_2} + \frac{ab}{r_2} = 2R \left[\left(\frac{a}{b} + \frac{b}{a} \right) + \left(\frac{b}{c} + \frac{c}{b} \right) + \left(\frac{c}{a} + \frac{a}{c} \right) 3 \right].$ 7.
- In a triangle the angles A, B, C are in A.P. Show that $2\cos\frac{A-C}{2} = \frac{a+c}{\sqrt{a^2-ac+c^2}}$. 8.
- 9. In a scalene triangle ABC the altitudes AD & CF are dropped form the vertices A & C to the sides BC & AB. The area of $\triangle ABC$ is known to be equal to 18, the area of triangle BDF is equal to 2 and length of segment DF is equal to $2\sqrt{2}$. Find the radius of the circle circumscribing $\triangle ABC$.
- 10. With reference to a given circle, A1 and B1 are the areas of the inscribed and circumscribed regular polygons of n sides, A_2 and B_2 are corresponding quantities for regular polygons of 2n sides : Prove that
 - A_2 is a geometric mean between A_1 and B_1
 - B_2 is a harmonic mean between A_2 and B_1
- Let a, b, c be the sides of a triangle & Δ its area. Prove that $a^2+b^2+c^2\geq 4$ $\sqrt{3}\Delta$, and find when does the 11. equality hold?
- If in a triangle of base 'a', the ratio of the other two sides is r (≤ 1). Show that the altitude of the triangle is less than or equal to $\frac{ar}{1-r^2}$.
- If the bisector of angle C of triangle ABC meets AB in D & the circumcircle in E prove that , $\frac{CE}{DF} = \frac{(a+b)^2}{c^2}$

E

JEE-[ADVANCED] : PREVIOUS YEAR QUESTIONS

1. If Δ is the area of a triangle with side lengths a, b, c, then show that: $\Delta \leq \frac{1}{4}\sqrt{(a+b+c)abc}$

Also show that equality occurs in the above inequality if and only if a = b = c.

[JEE 2001]

2. Which of the following pieces of data does NOT uniquely determine an acute-angled triangle ABC(R being the radius of the circumcircle)?

(A) a, sinA, sinB

(B) a, b, c

(C) a, sinB, R

(D) a, sinA, R

[JEE 2002 (Scr), 3]

3. If I_n is the area of n sided regular polygon inscribed in a circle of unit radius and O_n be the area of the polygon circumscribing the given circle, prove that $I_n = \frac{O_n}{2} \left(1 + \sqrt{1 - \left(\frac{2I_n}{n} \right)^2} \right)$

[JEE 2003, Mains, 4 out of 60]

4. The ratio of the sides of a triangle ABC is $1:\sqrt{3}:2$. The ratio A:B:C is

[JEE 2004 (Screening)]

(A) 3:5:2

(B) $1:\sqrt{3}:2$

(C) 3 : 2 : 1

(D) 1 : 2 : 3

5. (a) In $\triangle ABC$, a, b, c are the lengths of its sides and A, B, C are the angles of triangle ABC. The correct relation is [JEE 2005 (Screening)]

(A) $(b-c)\sin\left(\frac{B-C}{2}\right) = a\cos\left(\frac{A}{2}\right)$

(B) $(b-c)\cos\left(\frac{A}{2}\right) = a\sin\left(\frac{B-C}{2}\right)$

(C) $(b+c)\sin\left(\frac{B+C}{2}\right) = a\cos\left(\frac{A}{2}\right)$

- (D) $(b-c)\cos\left(\frac{A}{2}\right) = 2a\sin\left(\frac{B+C}{2}\right)$
- (b) Circles with radii 3, 4 and 5 touch each other externally if P is the point of intersection of tangents to these circles at their points of contact. Find the distance of P from the points of contact.

 [JEE 2005 (Mains), 2]
- 6. (a) Given an isosceles triangle, whose one angle is 120 and radius of its incircle is $\sqrt{3}$. Then the area of triangle in sq. units is

(A) $7 + 12\sqrt{3}$

(B) $12 - 7\sqrt{3}$

(C) $12 + 7\sqrt{3}$

(D) 4π

(b) Internal bisector of $\angle A$ of a triangle ABC meets side BC at D. A line drawn through D perpendicular to AD intersects the side AC at E and the side AB at F. If a, b, c represent sides of $\triangle ABC$ then

(A) AE is HM of b and c

(B) AD =
$$\frac{2bc}{b+c}\cos\frac{A}{2}$$

(C) EF = $\frac{4bc}{b+c}\sin\frac{A}{2}$

(D) the triangle AEF is isosceles

[JEE 2006, 5]

7. Let ABC and ABC' be two non-congruent triangles with sides AB = 4, AC = AC' = $2\sqrt{2}$ and angle B = 30 . The absolute value of the difference between the areas of these triangles is

[JEE 2009, 5]

- 8. (a) If the angle A,B and C of a triangle are in an arithmetic progression and if a,b and c denote the length of the sides opposite to A,B and C respectively, then the value of the expression $\frac{a}{c}\sin 2C + \frac{c}{a}\sin 2A, \text{ is } -$
 - (A) $\frac{1}{2}$
- (B) $\frac{\sqrt{3}}{2}$

(C) 1

- (D) $\sqrt{3}$
- (b) Consider a triangle ABC and let a,b and c denote the length of the sides opposite to vertices A,B and C respectively. Suppose a=6, b=10 and the area of the triangle is $15\sqrt{3}$. If $\angle ACB$ is obtuse and if r denotes the radius of the incircle of the triangle, then r^2 is equal to
- (c) Let ABC be a triangle such that $\angle ACB = \frac{\pi}{6}$ and let a,b and c denote the lengths of the sides opposite to A,B and C respectively. The value(s) of x for which a = $x^2 + x + 1$, b = $x^2 1$ and c = 2x + 1 is/are [JEE 2010, 3+3+3]
 - (A) $-(2+\sqrt{3})$
- (B) $1 + \sqrt{3}$
- (C) $2 + \sqrt{3}$
- (D) $4\sqrt{3}$
- 9. Let PQR be a triangle of area Δ with a = 2, b = $\frac{7}{2}$ and c = $\frac{5}{2}$, where a, b and c are the lengths of the sides of

the triangle opposite to the angles at P, Q and R respectively. Then $\frac{2\sin P - \sin 2P}{2\sin P + \sin 2P}$ equals

[JEE 2012, 3M, -1M]

- (A) $\frac{3}{4\Lambda}$
- (B) $\frac{45}{4\Delta}$
- (C) $\left(\frac{3}{4\Delta}\right)^2$
- (D) $\left(\frac{45}{4\Delta}\right)^2$

PREVIOUS YEARS QUESTIONS **ANSWER** KEY **EXERCISE-5** (b) A, B, C, D 2. 4. 5. (a) B; (b) $\sqrt{5}$ 7. D D 6. (a) C, 8. 9. (a) D, (b) 3, (c) B C